
CS 747 : Assignment 1
Regret Minimisation

Shivam Patel, 200070077

November 21, 2022

1 UCB, KLUCB, Thompson Sampling

1.1 Problem Statement

We try to implement standard regret minimisation algorithms and compare
them with benchmark regrets.

1.2 Methods

The UCB, KLUCB and Thompson sampling are standard algorithms
described in lectures. Thus, an in detail explanation is not required. All these
algorithms provide sub linear regret and are binding on the Lai Robbins lower
bound complexity.

1.3 Code Snippets

UCB Algorithm

class UCB(Algorithm):

def __init__(self, num_arms, horizon):

super().__init__(num_arms, horizon)

self.ucb_un = np.zeros(num_arms)

keeps value of the second term in the ucb

self.ucb_pa = np.zeros(num_arms)

keeps the first term, empirical estimate pa

1

self.ucb_total = np.zeros(num_arms)

the sum of two terms, the upper confidence bound

self.counts = np.ones(num_arms)

the number of times the arm has been samples,

kept 1 initially to avoid divide by zero

self.total_samples = num_arms

def give_pull(self):

return np.argmax(self.ucb_total)

returns the arm_index with highest UCB

def get_reward(self, arm_index, reward):

self.total_samples += 1

self.counts[arm_index] += 1

n = self.counts[arm_index]

self.ucb_pa[arm_index]=self.ucb_pa[arm_index]*(n-1)/n + reward/(n)

updating the empirical probability for the respective arm

self.ucb_un=np.sqrt((2*math.log(self.total_samples))/(self.counts))

calculating the UCB term 2 (exploration cost term)

self.ucb_total = self.ucb_un + self.ucb_pa

updating the UCB value

The above code is the complete class and method definition required for the
UCB algorithm. Appropriate comments have been added wherever necessary.

KL - UCB Algorithm

class KL_UCB(Algorithm):

def __init__(self, num_arms, horizon):

super().__init__(num_arms, horizon)

self.klucb_pa = np.zeros(num_arms)

keeps the empirical estimate pa

self.klucb_q = np.ones(num_arms)/1000

q value of each arm is stored in this np-array

self.kl_counts = np.ones(num_arms)

number of times each arm is sampled

the number of times the arm has been sampled,

kept 1 initially to avoid divide by zero

2

self.time = 1 # represents total time, initially set to 1

self.num = num_arms

self.c = 3

self.c is a hyperparameter

END EDITING HERE

The above snippet is the initialising constructor for the KL UCB class. All
the required variables have been defined and duly explained with comments.
Following is the code for binary search for finding the q value for each arm.

def give_pull(self):

for j in range(self.num):

binary search for q for each of num_arms

low = self.klucb_pa[j]

high = 1

ua = self.kl_counts[j]

mid = (high+low)/2

t = self.time

p = self.klucb_pa[j]

binary search loop run for 10 iteration,

#precision of 2^10 = 0.001

for i in range(10):

mid = (high+low)/2

if kl(p,mid)-(math.log(t)+self.c*math.log(math.log(t)))/ua<=0:

low = mid

the mid and low value are on same side of q

else:

high = mid

the high and mid value are on same side of q

self.klucb_q[j] = mid

self.time += 1

ix = np.argmax(self.klucb_q)

returning the optimum arm_index

self.kl_counts[ix] += 1

return ix

def get_reward(self, arm_index, reward):

self.kl_counts[arm_index] += 1

n = self.kl_counts[arm_index]

3

self.klucb_pa[arm_index] = self.klucb_pa[arm_index]*(n-1)/n + reward/n

updating reward

return

Thompson Sampling Algorithm
The code for thompson sampling is relatively easy to understand and fol-
low, and comments have been added at required places to aid the readers’
understanding.

class Thompson_Sampling(Algorithm):

def __init__(self, num_arms, horizon):

super().__init__(num_arms, horizon)

self.a = np.zeros(num_arms)

self.b = np.zeros(num_arms)

these variables keep track of arm pull successes and failures

def give_pull(self):

return np.argmax(np.random.beta(self.a+1, self.b+1))

returns the maximum sampled arm

def get_reward(self, arm_index, reward):

if reward==1:

self.a[arm_index] +=1

else:

self.b[arm_index] +=1

updating successes and failures for each arm

1.4 Results

Here, I have included the regret plots for the three algorithms. Thompson
sampling seems to have a linear growth after some time, as the algorithm
tries to find the best arm initially, and exploit it later. This is tantamount
to minimizing the slope of the linear part of the regret curve in Thompson
Sampling. In almost all other cases, there is a logarithmic nature of the graph.
I have obtained negative regret for later arm pulls in the KL-UCB algorithm.
This can be due to implementational details overlooked in the experiment
(negative regret can be due to any arm giving better than expected (pa)
positive reward ratio).

4

Figure 1: UCB sampling

Figure 2: KL UCB sampling

5

Figure 3: Thompson Sampling

2 Batched Sampling

2.1 Problem Statement

We try to implement batch sampling regret minimisation on a gener-
alised set of batch size, num arms and horizon parameters.

2.2 Methods

Batched Sampling calls for a generalised algorithm which has no clearly sep-
arated phases of explore and exploit, or else the algorithm may fail in some
edge cases like where horizon is not much larger than batch size. I have
implemented Thompson sampling here. I am computing the beta dis-
tribution samples for each pull in the batch size. The arm with maximum
beta sample is pulled, and the process is repeated for batch size number of
pulls. The success and failure counts for arms are updated after an entire
batch.
This algorithm is precisely known as Thompson Subsampling.

6

Figure 4: Task 2 Thompson Subsampling

2.3 Results

Here, I have included the regret plot for the algorithm. Thompson sampling
seems to have a linear growth, as the algorithm tries to find the best arm
initially, and exploit it later. We should not be confused by the linear nature
of the graph, as the algorithm already is finding the ’optimal’ arm in the kink
near origin. This is equivalent to minimizing the slope of the linear part of
the regret curve in Thompson Sampling.

3 Num Arms comparable to Horizon

3.1 Problem Statement

This task is aimed at finding appropriate algorithm for regret minisation in
the specific case where num arms is comparable to horizon (equal to in this
case).

7

3.2 Methods

This problem statement is unique in itself as any of the standard algorithms
learnt in lectures as well as implemented in this assignment will fail miserably
here. This is attributed to the fact that we have limited number of trials,
and cannot waste them for finding the maximum probability coin. We need
to come up with an approximately correct solution for the best coin, and
exploit it greedily.
I experimented initially with a thompson sampling algorithm, which
randomly sampled

√
num arms initially. Later on, these initially sam-

pled arms were greedily sampled through thompson sampling. The number
of times each of the

√
num arms were sampled at the beginning in round

robin fashion was also experimented, where the least amount of 1 sample
each gave the best results.

Shortcoming of the above algorithm -
This algorithm performed poorly on the test data. After serious thought,
I came to conclusion that not enough number of samples of each of the√
num arms arms were taken to set up a good Beta distribution which could

give high confidence intervals. (Code for the above algorithm is commented
in the submission for task 3 in the additional function definition space)

Newer Approach
I once again sampled

√
num arms, and then used the ϵ Greedy 3 algorithm.

The epsilon in my implementation was ϵ = 1√
num arms

.

This choice of ϵ was based on intuition, and backed by the discussion in
one of the lectures as to how to convert an ϵ Greedy algorithm to get loga-
rithmic regrets (GLIE - Greedy in the Limit and Infinite Exploration).

This algorithm worked smoothly on the test data, giving acceptable regrets
and desirable logarithmic resembling graphs.

8

3.3 Code Snippets

In the Init() method

self.num_explore = math.floor(1*math.sqrt(self.horizon))

self.eps = 1/self.num_explore

self.chosen_samples = np.random.choice(self.num_arms,

size=(self.num_explore), replace=False)

In the give pull method

if self.t < 1*self.num_explore: # exploring stage

maxm_ix = self.chosen_samples[self.t % self.num_explore]

the index returned is the tantamount to the round robin arm pulling

#(hence modulo operator)

else:

if np.random.random() < self.eps: # explore

maxm_ix = self.chosen_samples[self.t % self.num_explore]

else: # exploit

maxm_ix = np.argmax(self.pa)

3.4 Results

The regret plot shows us that the ϵ Greedy 3 algorithm changes the choice
of the best coin at various points during the simulation, implying that it is
a good fit for such applications.

4 References and Acknowledgements

This assignment and code is completely mine, and I have taken no direct
code from anywhere.
I am grateful to TAs and my friends Khush Jain and Aayush Rajesh for
resolving issues related to docker installation and usage.

9

Figure 5: Task 3 ϵ Greedy sampling

10

