CS 747 : Assignment 2
MDP Planning and the Cricket Game

Shivam Patel, 200070077
November 21, 2022

1 Analysis of Cricket Planning

1.1 Winning Probability vs q_value : Part 1

Probability of Winning from state 15b30r vs q_value

—w— Player 1
012 == Random Policy
D.10
[=]
=
£ 008
=
[
[=]
Z 006
£
m
£
£ 004
T ——
0.02 \\
0.00
00 01 02 03 04 05 06 07 08 09 10
g value

Figure 1: Winning Probability vs q_value, Part1

e In the graph of winning probability vs q_value, we see that as the
q-value increases, i.e. the probability of player B getting out at each
ball increases, the winning chances decrease.

e This is a monotonically decreasing trend, as there is no case possible
where increasing q_value will increase the chances of winning from any
state for which player A plays.

e Also, the chances for random policy are always less than the optimal
policy. In the degenerate case where q_value=1, the game ends in a
loss for all episodes when player B comes to play

1.2 Winning Probability vs Target Runs : Part 2

Winning Probability for Target Runs in 10 Balls

10
—w— Player 1
== Random Policy
0.8
=1}
=
=
E 06
=
[
=]
Z
= 04
£
=
=T
0.z
DG T T T T T T T T T T
0 2 4 & B 10 12 14 1a 15 20

Target Runs

Figure 2: Winning Probability vs Target Runs, Part2

e In the graph of winning probability vs target runs, we see that the
chances of winning decrease as the target increases. This is justified
as whenever there is an increase in the target within same number of
remaining balls, it becomes difficult to achieve it.

e This monotonicity is easily seen for the optimal case. But in the random

1.3

policy case, we observe that the winning probability is not strictly
monotonic, because the policy we are following is non optimal, and
may lead to even better chances of winning for a higher target.

There cannot exist any point on the curve for random policy above the
optimal policy, which indicates that random policy is better than the
optimal policy, which is a fallacy in itself, as otherwise this random
policy would have been the optimal policy, which is not the case here.

Winning Probability vs Remaining Balls : Part 3

Probability of Scoring 10 vs Remaining Balls

—w— Player 1
=—w=Random Policy

04

(=]
L

(=]
P

Probability of Scoring 10

01

00

0 2 4 B B 10 12 14
Balls Left

Figure 3: Winning Probability vs Remaining Balls

In the graph of winning probability vs remaining balls, we find that
the line for optimal policy is always above the random policy file (as
optimal policy gives the highest probability of winning from any state
of bbrr as compared to any other policy).

e An important point to note is that there are dips in the graph for
optimal policy at balls 7 and 13, as the strike is likely to change in the
very next ball, and the batting goes in the hands of the weak player B,
which reduces the chances of winning as compared to the a ball more
or less for the same target runs.

2 MDP Planning

2.1 Problem Statement

We aim at implementing various algorithms for MDP planning and evalua-
tion, namely value iteration, linear programming and howard policy iteration.
We use a black box linear programming solver PulP.

2.2 Methods

The Value Iteration, Linear Programming and Howard Iteration are
standard algorithms described in lectures. Thus, an in detail explanation is
not required.

2.3 Code Snippets

Value Iteration

def value_iteration(mdp_info, dict_mdp):

v_t = np.array([0]*num_states)
v_tl = np.array([0]*num_states)+0.1
for end in end_states:

v_tl[end] = 0

for i in range(500000) :
if np.max(np.abs(v_tl-v_t)) < le-12:
break
v_t = v_t1l.copy()
for s1 in set(range(mdp_info[0])).difference(set(end_states)):
arr = [0]*num_actions # len = num_actions

for ele in dict_mdp[si]:
arr[ele[1]]+=ele[4]*(ele[3] +gamma*v_t[ele[2]])
v_t1[s1l] = max(arr)

now, the wvalue function s calculated,
we need to take argmaz at each state for finding optimal policy
for s1 in set(range(mdp_info[0])).difference(set(end_states)):

arr = [0]#mdp_info[l] # len = num_actions

for ele in dict_mdp[si]:

arr[ele[1]]+=ele[4]*(ele[3] +gamma*v_t[ele[2]])
policy[sl] = arr.index(max(arr))
argmazxz over actions for each state

return v_t, policy

Linear Programming

def linear_solver(mdp_info, dict_mdp, dict_pol_eval):

prob = LpProblem('MDP-valuefn' ,LpMinimize)
vars = LpVariable.dicts('state_list', (states))
prob += (lpSum([vars([s] for s in range(num_states)]))
for keys in dict_pol_eval.keys():

ele [s2,r,p]

prob += 1pSum([ele[2]*(ele[1] + gammax*vars[ele[0]]) \\

for ele in dict_pol_evallkeys]]) <= vars[keys[0]]

if end_states[0]!=-1:

for ends in end_states :

prob += vars[ends]==

prob.solve (PULP_CBC_CMD(msg=0))
now we have the wvariables and their optimum value
x_star=[0]*mdp_info [0]
for i in range(num_states):

x_star[i] = vars[i].value()

policy = [0]*mdp_info[0]
now we find the optimal policy
for s1 in range(mdp_info[0]):

if s1 in end_states:
policy[s1]=0
continue
arr = [0]#mdp_info[l] # len = num_actions
for ele in dict_mdp[si1]:
arr[ele[1]]+=ele[4]*(ele[3] +gamma*x_star[ele[2]])
policy[sl] = arr.index(max(arr))
argmaxz over actions for each state

return x_star, policy

Howard Policy Iteration

def howard_solver (mdp_info, dict_mdp, dict_pol_eval, policy_list):
howard solver for finding optimal policy
num_states = mdp_info[0]
end_states = mdp_info[2]
v_current = policy_eval(policy_list, dict_pol_eval, mdp_info)

d = {i:0 for i in range(num_states)?}
for s1 in set(range(num_states)).difference(set(end_states)):
d[s1] = get_qga(dict_mdp, mdp_info, dict_pol_eval,\\
policy_list, v_current, sl)

new_policy_list = improve_policy(policy_list, d, mdp_info)
if new_policy_list == policy_list:
return v_current, policy_list
else:
policy_list = new_policy_list
return howard_solver (mdp_info, dict_mdp, dict_pol_eval, policy_list)

Policy Evaluation

def policy_eval(policy_list, dict_pol_eval, mdp_info):
end_states = mdp_info[2]
gamma = mdp_info[4]
num_states = mdp_info[0]

dict_pol_eval[tuple([sl,ac])].append([s2,7,p])
dict_mdp[s1].append([s1,ac,s2,7,p])
structure of dictionaries

a = np.zeros((num_states, num_states))
holds coeffictents of all v_pi(s)
b = np.zeros(num_states) # holds the constants in => a*vu_pi = b
for sl in range(num_states):
if sl in end_states:
b[ls1]=0
als1,s1]=1
setting zero condition for terminating states
continue

for ele in dict_pol_eval[(sl,policy_list[s1])]:
b[s1] += -ele[1]xele[2]
als1l,ele[0]] += ele[2]*gamma

als1l,s1] += -1

v_pi = np.linalg.solve(a,b)
return v_pi

3 Cricket MDP planning

3.1 Problem Statement

In this real world application of MDPs and planning, we try to implement
and formulate an optimal policy for a middle order batter, given the tail ender
and the opposing team are a factor of the nature/game environment and out
of our control. We formulate an encoder and a decoder, which facilitate the
solvers obtained in partl to predict the correct optimal policy.

3.2 Methods

Here, I have implemented an MDP for 'two’ players A and B. There are
num_balls and num_runs given to us through the cricket states.txt file.
There are num_balls x num_runs possible states in which player A can be,

and take actions as per his choice. But, as player B is a part of the envi-
ronment, we have to make his outcomes independent of his actions. Thus,
for all other num_balls * num_runs states for player B, we take all actions
with outcomes as [-1,0,1] w.p. [q,(1-q)/2,(1-q)/2], where q is the 'weakness’
parameter of player B.

Here is a part of the mdp file -

transition 1403a 3 1303a 0 0.025
transition 1403a 3 1302b 0 0.05
transition 1403a 3 1301a 0 0.075
transition 1403a 3 win 1 0.15
transition 1403a 3 win 1 0.5
transition 1403a 4 end 0 0.4
transition 1403a 4 1303a 0 0.05
transition 1403a 4 win 1 0.25
transition 1403a 4 win 1 0.3
transition 1403b 0 end O 0.9
transition 1403b 0 1303b 0 0.05
transition 1403b 0 1302a 0 0.05
transition 1403b 1 end 0 0.9

Such encoded states are then converted to integers mappings, through
the following function -

def give_state_integer(state, max_balls, max_runs):
if state=='win':
return 1
elif state=='end':
return O
balls = int(state[0:2])
runs = int(statel[2:4])
player = str(state[-1])
if balls==max_balls:
if runs==max_runs:
return 2
elif player=='a':
return (max_runs-runs)*2 + 1
elif player=='b':

return (max_runs-runs)*2 + 2
else:
if player=='a':
return 2*max_runs* (max_balls-balls) + (max_runs-runs)*2 + 1
elif player=='b':
return 2*max_runs*(max_balls-balls) + (max_runs-runs)*2 + 2

After encoding to integers, the mdp looks like this.

transition 115 3 175 0 0.025
transition 115 3 178 0 0.05
transition 115 3 179 0 0.075
transition 115 3 1 1 0.15
transition 115 3 1 1 0.5
transition 115 4 0 0 0.4
transition 115 4 175 0 0.05
transition 115 4 1 1 0.25
transition 115 4 1 1 0.3
transition 116 0 0 0 0.9
transition 116 0 176 0 0.05
transition 116 0 177 O 0.05
transition 116 1 0 0 0.9

4 References and Acknowledgements

This assignment and code is completely mine, and I have taken no direct
code from anywhere.
[1] PulP Linear Solver

https://coin-or.github.io/pulp/

	Analysis of Cricket Planning
	Winning Probability vs q_value : Part 1
	Winning Probability vs Target Runs : Part 2
	Winning Probability vs Remaining Balls : Part 3

	MDP Planning
	Problem Statement
	Methods
	Code Snippets

	Cricket MDP planning
	Problem Statement
	Methods

	References and Acknowledgements

